Coding of Cognitive Magnitude Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex

نویسندگان

  • Andreas Nieder
  • Earl K. Miller
چکیده

Whether cognitive representations are better conceived as language-based, symbolic representations or perceptually related, analog representations is a subject of debate. If cognitive processes parallel perceptual processes, then fundamental psychophysical laws should hold for each. To test this, we analyzed both behavioral and neuronal representations of numerosity in the prefrontal cortex of rhesus monkeys. The data were best described by a nonlinearly compressed scaling of numerical information, as postulated by the Weber-Fechner law or Stevens' law for psychophysical/sensory magnitudes. This nonlinear compression was observed on the neural level during the acquisition phase of the task and maintained through the memory phase with no further compression. These results suggest that certain cognitive and perceptual/sensory representations share the same fundamental mechanisms and neural coding schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A labeled-line code for small and large numerosities in the monkey prefrontal cortex.

How single neurons represent information about the magnitude of a stimulus remains controversial. Neurons encoding purely sensory magnitude typically show monotonic response functions ("summation coding"), and summation units are usually implemented in models of numerosity representation. In contrast, cells representing numerical quantity exhibit nonmonotonic tuning functions that peak at their...

متن کامل

Compressed Scaling of Abstract Numerosity Representations in Adult Humans and Monkeys

There is general agreement that nonverbal animals and humans endowed with language possess an evolutionary precursor system for representing and comparing numerical values. However, whether nonverbal numerical representations in human and nonhuman primates are quantitatively similar and whether linear or logarithmic coding underlies such magnitude judgments in both species remain elusive. To re...

متن کامل

Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend.

The prefrontal cortex is commonly associated with cognitive capacities related to human uniqueness: purposeful actions towards higher-level goals, complex social information processing, introspection, and language. Comparative investigations of the prefrontal cortex may thus shed more light on the neural underpinnings of what makes us human. Using histological data from 19 anthropoid primate sp...

متن کامل

Achievable Secrecy Rate Regions of State Dependent Causal Cognitive Interference Channel

In this paper, the secrecy problem in the state dependent causal cognitive interference channel is studied. The channel state is non-causally known at the cognitive encoder. The message of the cognitive encoder must be kept secret from the primary receiver. We use a coding scheme which is a combination of compress-and-forward strategy with Marton coding, Gel’fand-Pinsker coding and Wyner’s wire...

متن کامل

Integration of cognitive and motivational context information in the primate prefrontal cortex.

The prefrontal cortex (PFC) appears to be important for processing both cognitive and motivational context information. Primate lateral PFC (LPFC) neurons are involved in cognitive context-dependent stimulus coding by responding differently to an identical stimulus according to the task situation. Such context-dependent LPFC activity appears to be supported by context-representing activity, obs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2003